SAMPLE PAPER 7: PAPER 1

QUESTION 7 (50 MARKS)	
Question 7 (a)	,
$P = €60\ 000, t = 5$ years, $i = 0.065$	$A = P \frac{i(1+i)^{t}}{(1+i)^{t}-1}$
$A = 60\ 000 \left(\frac{0.065(1.065)^5}{(1.065)^5 - 1}\right) = €14\ 438.07$	(1+l) - 1

Question 7 (b)

Payment #	Fixed Payment	Interest	Debt Payment	Balance
0				€60 000
1	€14 438.07	€3900	€10 538.07	€49 461 • 93
2	€14 438.07	€3215.03	€11 223.04	€38 238 89
3	€14 438.07	€2485.53	€11 952.54	€26 286.35
4	€14 438.07	€1708.61	€12 729.46	€13 556.89
5	€14 438.07	€881.20	€13 556.87	0

CALCULATION FOR YEAR 1

Payment Number 1: $\in 14\ 438.07$ Interest: $\in 60\ 000 \times 0.065 = \in 3900$ Debt Payment: $\in 14\ 438.07 - \in 3900.00 = \in 10\ 538.07$ Balance: $\in 60\ 000 - \in 10\ 538.07 = \in 49\ 461.93$

Question 7 (c) (i)

$$P = \frac{5000}{(1 \cdot 045)^8} = \textcircled{=} 3515 \cdot 93 \qquad \left| P = \frac{F}{(1+i)^t} \right|$$

Question 7 (c) (ii)

$$P = 250 + \frac{250}{1 \cdot 045^{1}} + \frac{250}{1 \cdot 045^{2}} + \frac{250}{1 \cdot 045^{3}} + \frac{250}{1 \cdot 045^{4}} + \frac{250}{1 \cdot 045^{5}} + \frac{250}{1 \cdot 045^{6}} + \frac{250}{1 \cdot 045^{7}}$$

$$P = 250 \left(1 + \frac{1}{1 \cdot 045^{1}} + \frac{1}{1 \cdot 045^{2}} + \frac{1}{1 \cdot 045^{3}} + \frac{1}{1 \cdot 045^{4}} + \frac{1}{1 \cdot 045^{5}} + \frac{1}{1 \cdot 045^{6}} + \frac{1}{1 \cdot 045^{7}} \right)$$

$$a = 1, \ r = \frac{1}{1 \cdot 045}, \ n = 8$$

$$\therefore P = 250 \left(\frac{\left(1 - \left(\frac{1}{1 \cdot 045} \right)^{8} \right)}{1 - \frac{1}{1 \cdot 045}} \right) = \text{€}1723 \cdot 18$$

Question 7 (c) (iii)

Minimum price = $\in 3515 \cdot 93 + \in 1723 \cdot 18 = \in 5239 \cdot 11$ Minimum price bonds can be offered is $\in 5239$ to the nearest euro.