Sample Paper 7: Paper 1

Question 7 (50 marks)

Question 7 (a)
$P=€ 60000, t=5$ years, $i=0 \cdot 065$
$A=60000\left(\frac{0 \cdot 065(1 \cdot 065)^{5}}{(1 \cdot 065)^{5}-1}\right)=€ 14438 \cdot 07$

Question 7 (b)

Payment \#	Fixed Payment	Interest	Debt Payment	Balance
0				$€ 60000$
1	$€ 14438.07$	$€ 3900$	$€ 10538.07$	$€ 49461.93$
2	$€ 14438.07$	$€ 3215.03$	$€ 11223.04$	$€ 38238.89$
3	$€ 14438.07$	$€ 2485.53$	$€ 11952.54$	$€ 26286.35$
4	$€ 14438.07$	$€ 1708.61$	$€ 12729.46$	$€ 13556.89$
5	$€ 14438.07$	$€ 881.20$	$€ 13556.87$	0

Calculation for Year 1

Payment Number 1: €14 438.07
Interest: €60 $000 \times 0 \cdot 065=€ 3900$
Debt Payment: €14438.07-€3900.00 = €10 538.07
Balance: €60 000 - €10 538•07 = €49 $461 \cdot 93$
Question 7 (c) (i)
$P=\frac{5000}{(1 \cdot 045)^{8}}=€ 3515 \cdot 93$
$P=\frac{F}{(1+i)^{t}}$
Question 7 (c) (ii)
$P=250+\frac{250}{1 \cdot 045^{1}}+\frac{250}{1 \cdot 045^{2}}+\frac{250}{1 \cdot 045^{3}}+\frac{250}{1 \cdot 045^{4}}+\frac{250}{1 \cdot 045^{5}}+\frac{250}{1 \cdot 045^{6}}+\frac{250}{1 \cdot 045^{7}}$
$P=250\left(1+\frac{1}{1 \cdot 045^{1}}+\frac{1}{1 \cdot 045^{2}}+\frac{1}{1 \cdot 045^{3}}+\frac{1}{1 \cdot 045^{4}}+\frac{1}{1 \cdot 045^{5}}+\frac{1}{1 \cdot 045^{6}}+\frac{1}{1 \cdot 045^{7}}\right)$

$$
a=1, r=\frac{1}{1 \cdot 045}, n=8
$$

$\therefore P=250\left(\frac{\left(1-\left(\frac{1}{1 \cdot 045}\right)^{8}\right)}{1-\frac{1}{1 \cdot 045}}\right)=€ 1723 \cdot 18$

Question 7 (c) (iii)

Minimum price $=€ 3515 \cdot 93+€ 1723 \cdot 18=€ 5239 \cdot 11$
Minimum price bonds can be offered is $€ 5239$ to the nearest euro.

